
I AD-AI03 067 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/G 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME--ETC(U)
FEB 77 F J MARYANSKI, V WALLENTINE DAAG29-76-6-0108

JNCLASSIFIED CS-77-2 NLEEEllllEEEEE
IEEIIEEEEIIEI

AIR M IC5 Army Institute to(Research in 313 Calculator Bldg.
Management Information and GA Institute of Technology
Computer Science Atlanta, GA 30332

Technical Report

-RESEARCH IN FUNCTIONALLY
DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT.

Kansas State University

Virgil Wallentine

Principal Investigator ,u '01981 4

Approved for public release; distribution unlimited

VOLLII VIII
a-N il

A DEADLocKPREvwION ALGORITHM FOR
iuiSTRIBUTED DATA BASE MANAGEMENT SYSTEM

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

.,9

• 6 -. -

. . . i 1 " '. = , " - - . .

" NCI,AS; [I _I ED)_ _ _

SLCUfjITY CL.A ',IrICATION OF T)I4t1 PAGE (Whrr t)nV 1 ti ered)

REPORT DOCUMENTATION PAGE RFAD INSThRMJCIONS
EFIOR|"E COMPI.I'V1"ING ;ORM

1. NLPORT NUMULR GOVT ACCESSION NO.I 3. RECIPIENTS CATALOG NUMBER

.1 C

4. I ITLE (end Subt~he) 5. TYPE OF REPORT & PERIOD COVERED

A DEADLOCK PREVENTION ALGORITHM FOR
DISTRIBUTED DATA BASE MANAGEMENT SYSTEMS. Iterim

6. PERFORMING ORG. REPORT NUMBER

... . .CS 77-2
7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(&)

Fred Maryanski

DAAG 29-76-G-0108'

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

Kansas State University
Department of Computer Science
Manhattan, KS 66506

I1, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Research Office February 1977
P 0 Box 12211 13. NUMBER OF PAGES
Research Trian 'te Park, NC 27700 27 pages

14. MONITORING AGENCY NAME & ADDRESS(If dttferent from Controlling Office) I5. SECURITY CLASS. (of this report)

US Army Computer Systems Command Unclassified
Attn: CSCS-AT
Ft. Belvoir, VA 22060 Is. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEME NT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different Iron Report)

18 SUPPLEMENTARY NOTES

hle findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
d oLmen ts.

rl K F y WOrlDS l,(,,nrnue r- reverse side if neceinary and identilfy by block nlUw berI

SI),id I o 'k

S'O Altl NAC T I Ct tlriue nn rovorso -tb- It net-esary ontd idenltify by block number)
9 I

DD) 1,7 11t Ii N 0'l -i 11, 1," ~ t lb f I T I I

D Dlt ,1t C ,,,,,I ,.,.',At,',t,,,,l~~ t'',,,o t,,,

SEC IRIT\ CL A'.IFICATION or 7THIS PAGE(Wh ?e', OD, Inrod)

-ABSTRACT-

The problem of deadlock in distribut-d data base
management is analyzed in terms of performance effects of
potential deadlock handling schemes. The performance
tradeoffs of deadlock detection and deadlock prevention for

distributed data base management systems are compared.
SincP the run-time overhead in deadlock prevention is
projected to be less than for deadlock detection, an

algorithm for preventing deadlocks in distributed data base

systems is developed. The critical information for the
deadlock prevention algorithm is maintained in a shared
record list. The shared record list contains all shared

access records for a set of tasks. Shared recoras lists are
maintained dynamically by the run-time system. A proof that

the algorithm prevents deadlocks in a distributed data base
management system is provided along with a comprehensive
example.

%wooU S

.i

UNCLASSIFI ED

A Deadlock Prevention Algorithm

for Distributed Data Base Management

1
Systems

Technical Report CS77-02

Fred J. Maryanski

Computer Science Department
Kansas State University
Manhattan, Kansas 66506

February 1977

l'he woik r(- oited lwroin wa:; supported by the United
*Static; Armiy Coipntor Sy.;t'm.; Comma-nd, Crant No. DAAC

29-76-C-0108.

*1,

":

Ab.t;L r;a ct

The problem of deadlock in distributed data base management is

analyzed in terms of performance effects of potential deadlock handling

schemes. The performance tradeoffs of deadlock detection and deadlock

prevntion for distributed data base management systems are compared.

Since the run-time overhead in deadlock prevention is projected to be

less than for deadlock detection, an algorithm for preventing deadlocks

in distributed data base systems is developed. The critical information

for the deadlock prevention algorithm is maintained in a shared record

list. The shared record list contains all. shared access records for

a set of tasks. Shared records lists are maintained dynamically by the

run-time system. A proof that the algorithm prevents deadlocks in a

distributed data bse managment system is provided along with a compre-

hensive example. A discussion of the efficiency of the deadlock

prevention algorithm indicates that partitioning the data base into

sub-schemas reduces the overhead.

-!

iey Word,; and lhr;;es:

Distributed daLa base management systems, deadlock prevention,

system deadlocks.

CR Categories:

4.33

.

I]nt ro(lic t i Oll

One of tle major trends in computer systems is toward the decenLralizltionj

of r sources and facilities. This phenomenuin has lead to a requirement for

distributed data base management systems. A distributed DBMS permits an

application program executing on a processor in a computer network to access

data on any other node in the network. In an optimal situation the only

limits on data access are communication linkages and security. A distributed

DBMS relies upon its underlying network for communication facilities. The

basic data base software in a distributed system is functionally identical to

a centralized (one machine) system.

From the preceding statements it appears that a distributed DBMS can be

realized by interfacing a centralized data base system with a network communicati,

facility. flowever, as indicated by Fry and Sibley [10], when a data base

system is extended to operate over several machines a whole new class of

problems arises while many existing problems become more complex. Among

those problems that are complicated by the distribution of the data base

is that of deadlock. This paper proposes a method for preventing deadlock

in a cistributed data base system. The algorithm stated here is intended to

avoid ddtick in a manner that is transparent to the application program and

will ,ii ,f ct on proce(sses that would not be involved in a dead]ock

S i I ',It f),l.

2.))i:, r ihut,,d 11,', a Bases Syste-ms

Befort tHit' prc:cnitation of the deadlock prevention a]gorithm can occur,

t ii~n mterni il' dt') a.se malagement systtems in general and distributed

* dit hit .. ,(:'!t, ill Iart iclnar must be established . A schema is a logical

d'! I;,- ionl f .dt bas . TIhc portion of a schema that may be acces ;od by
.'-

, o~~~~ p,.at Iil.i- ijt, , ia.t ion p~rogra.m is; spec if jed by thme su_,b-silie5ma assoc i t ed

2'

wit'i t11.t pr lograin. The suh-schema de f ic:; tile daLa records that tile program

may ope.ite upon and indicates the logical relationships among the record:,

in tihe data base.

In a centralizcd data base system, the application program, sub-schema

and data ba;e software all reside on one processor which is physically connected

to the secondary storage containing the data base. A distributed data base

managiement system has resources and their control spread among the processors

of a computer network. In a distributed DBMS, an application program executing

on one network node may access data that reside at several distinct nodes. A

comptor tlat executes data base application programs is a host machine. A

back-end maChine is one which controls access to data. A machine with both

capabilities is termed a bi-functional machine. Figure 1 protrays a distributed

DBMS with host, back-end, and bi-functional nodes. A discussion of the

general organization of distributed data bases can be found in Reference [18].

In order to implement a distributed DBMS, the software required for

a centralized DBMS is necessary plus some communication and control software.

As indicated in Reference[l81, communication between application programs and

dat Catll. n best bLe accomplished by means of a generalized message

sy:;t .;, V.hi'l isi c;,ali e of handling,, communication among heterogeneous machines,.

5 :gt sv;Lcm wt t 1.-;o allow for transmission over a wide range of

. t Ir--: inio C c 1Ctt i oun, from conventional phone lines (typically 1200 baud)

no ic.r.d meory (I L..:teIV ION baud).

A lamip of mm,1oli .i ; tied tel'ether via memory- to-memory linkages is known

a: .m ci .. A network can be formed from a collection of clusters joined

by conut ped rommecti nm;. In a di;tributed DBMS com;munication between

macii,. . tihe :;am,' clustcr cal occur with little overhead. However,

intcr ci., t. L ,,' murmi iM may re,;tu.] in noticeable performance degradation

3

The impact of inLern:Ich ilnc communication upon system performance is an

important considerat ion in the tireatment of dead]ock n a distributed Dit;.

3. Deadlock in a distributed DBMS

In general,deadlock(occurs when two or more processes request a set of

shared resources in a sequence that results in the activation of each proces

being dependent upon the acquisition of a resource held by another process

whose activation is also blocked. A considerable amount of study has been

done on the deadlock problem of operating systems [5,6,9,12-14,19-20]. The

particular form of deadlock under consideration in this report involves

processes that are data base application tasks residing on (potentially)

different machines in a data base network. The shared resource is a

collection of records dispersed among the data bases of the system that may

be upd..itcd by more than one application program. It is assumed that no

user imposed restrictions concerning accessibility have been placed upon the

data records. This form of deadlock is a DBMS problem, not a user problem.

The means of treating deadlock must be totally transparent to the application

progr.,m.

The spocial difficulty of deadlock in a distributed data base is that

.lnci !, ero is no central control point in the network, the responsibility

ior notin , the, actall or potential occurrence of a deadlock situation can not

easy h, .; i ;. .' e task requesting the resource can be informed that the

rc.q ; .; ,wa un-ibl e to b., fulfilled. However, if that resource is controlled

oy one ((,r iol,) different processorn, considerable manipulation and intermachinc

-mi;mnic,ition would be required to determine if a deadlock situation exists,

-4

(. 'L

4

4. ihD.icc~ ierriti anid Prevent ion

ThL-ri0 art, two basic miechanistis for treating the deadlock problem [4].

Otte ;ipproaii i!; to prevent deadlock before it can occur. Deadlock prevention

requii ren zi pr ior know]ledge of the shared records to be operated upon by a]l1

acti, pplcat ion tasks, in the system. The alternative to deadlock pre-

vcnin i.dea d lock detectionl Which involves noting the existence of a

dead]lock taincnIeresol ved by hal ting one of the compet ing

proc(-n-.es and free ing it.s resources for access by other processes. However,

ta!:k "ri -"is; det rirmental to sysLOte performance and in some cases in-

f eaS ib.)1

In a distr-ibuLed DINIS, both deadlock prevention and detection produce

conlsiutr1_ r ver'ffin O011t!;; -. r ticularly if interciuster co-amunication results.

lyidi '> yiutn i i i distributed data base requires that records that may

be in~ed wng 'Vea Itas s(and updated by at least one) be identified.

Fol tl 2'ii f:1ormit i n to be meaningfuli, only the records shared with currently

ir t iVc ik;I Il;Iti 1 1)r i TC I Lidecd. This implies that whenever a task that up-

9rkicolk!s enIters the svtnthe list of shared records must be

r V.r..1. tnL 1 in, 11a t t'~n til cthe nW ta]Sk Canl proceed . Whenever a

.1 i rt cord a r i ss, a prevent ion al1gor it hm can be invoked

'a ti,.:I tlle aiccess may p rocced . if not , the task is blocked until

L i t' c c . r

iii 2.W (,e I ove~rheald ill dea;dlock prevention in at dist ributed DINS

11;:,. i-;- Md eor;umHt ionl of t he l ist of ,flarud records f or act ive

:I (.c)I. I . IT I], tthIn I tope rot ioil wi i hInin:t occur whenevcer taskJs are

1K. , :ti'n tTK 'Yt'! A,; in all prcvent ion schiernrs, some time is devoted

(I 1Vt I i:;' '1 111 "Lt tK 1i 1i would notti have octiirred durii ing, a part icul ar t'xeclit i on

i~tt .1..........* i H. ~tt.. r lit a t 0 ii i i m orc r co r than it act Ii IV Lnn-4tI11 i

5

Deadlock detection schemes repre,;ent an a posteriori approach to th.

problcin of avoiding deadlocks. In a diutributcd data basc sy.;tem, deadlock

detection involves first identifying a set of two or more tasks blocking each

other from a collection of shared records. Generally a "timeout" mechanism

which involves noting that the effected tasks have been waiting for longer

than some fixed time is used in deadlock detection. Once the set of dead-

locked tasks and the conflicting resources are identified, one of the tasks

must be rolled back to some point that will free the resources necessary to

break the deadlock. Rollback involves restoring all data to the values held

before the operations being retracted were performed. In a distributed

environment, the data base operations may be initiated on one host processor

and carried out by several different back-end processors. Rollback action

would have to be initiated by the host processor and then carried out by the

back-end processor in a manner analagous to the execution of a standard

data base access;. This will necessitate considerable message transmission

activity to start and synchronize the rollback operation.

An additional nw,.;tivc performance factor in the deadlock detection

aproaci is th:sit tar.; not involvci in the deadlock situation can be effected

if thcy h.iv(. -, !it.; .:r i:-n 1,,v thc scquence of commands being rolled

back. In thi.; (- k., tYt t,: .1 ,!c, I thi data would also have to be rolled

. It i.- p ,.iH, for tI,. rl 1 .icV t., ca,.cade throughout the system in the

WOKt c~tA('.

ii,, d,'.,tl , ,. , i a] l tlh : dc .rii td in x,'rcu ccr 12,3,7,15] all

I-(.i Iti . .I 1 1 , .i I i .t I I ,C ". Ind thc record !, th1.1t th y acce:;!;. This

jil ma, i I . :(I. i t thjt t 'I iI (d il 1 dc.idlock pr'vcnt ion .;ctmce.

Ac tuii i : 'n 1. in!t.i ilin', an acc(citlil ity I ist for deadlock det ct ion coul(l.

ri,,i I i h IV',* Co:,;'nicat ion load in a distributed system as in the case oi

d" -t -- , -,1 1V '11j n

A (,o: pui r;tln of tht two alternatives for avoiding da(dl'ock ind Iat '

that l,,til t vi,, of algorithm; would requiroe some form of a record acce:.5-

ibilit',' 1 i;t. Since deadlock prcvention requires continual compttationa]

and c,::'iaii cation activity to avoid deadloclk whereas deadlock detection

1: ,].,,IC: ,1," rost likelv to be invoked infrequently, ther(e is potentbnoilly

nort r ze ii d in deadlock prevention, However, the overhead is fixed and the

,rt'vt t i;.al[e.orithm h:;s no effect upon processes that may not be involved in

any ,a. ,>4:T it nt ion. In a distributed data base system, the rollback and

[I .tt .;ii : tr; of deulock detection could result in substantial com-

to! " 0:.. 100 co,:.,m.iu.,;tino: ovcrhead and also the rolling back or blocking of

;:;".. n.i r O ved in the, deadIock situation.

occooet of th, un'crtain and potentially serious performancu degradatio:

that rnov ralt from r, lbanck in a distributed DBMS deadlock prevention is

a I.afcr ;:tratcgv for honcdling deadlocks in a distributed data base environ-

1Oit . lion . this t -or conceot rates upon deadlock prevention.

', , ,'".1 'a R}", .,i,:0 1'. t e lPreve'nt [l.'ad lock

III di. i d 111 1: i i zin" the proposed prcvcnt oion algorithm,

L' ,, : : -' :, wil be renp;onn;ible for prc,vnting deadlock sit uatiens

i ,.'. ' : ?*' I n.' 0, , th,. data ho,:c unde.r its; control. Since the back-end

V.) ~~~~n the hebc,-~1

.......... i- it. t fun 10501 20 of man ipnIathe data, it is best suited

. , r, , :i - ., for dCadlock: prevention. In this way, the

1,7-, r :i,,,I i:; r.mv'v d fro , the applicnt ion task.

.: .tiv,, I.: th it it i;: s rvin g, tilt' miiltiains

;] I t ,: : , , , t} I; T ' I, / 'Ct: cd 1,y 'cvt'rai t k:; ,n d , iiltpdat vd by at

""Iun .; * ,I ,', 1 l I ' d 1 vcd frm thbe :aib-n ;:,i of t:15:- . when I

t . idt .. : t Ki . in ' ' I d I i! t i. ; i icul t cd iliulg thO' back-coid
(

7

I l~l.... '.'.. '. t, d*'t l. i- im ' it .tily io(, i'. ~ *+ w'it i t o thcr l.l:J . X j+;l;; A

I oj; I Ii i att t iItl, I ;I:k: , lt :l. Il. ii i .t I y I(I ,;,t'lt-,.i ,l I)r , "v I,;() .. t-I In t (1(1"

to mitlimi+ Llt. commulllcations overead upon tas;k initiat=on, each back-

end processor can maintain a list which indicates those back-end processor:,

whi ch emy control records shared with any given sub-schema. Only these ,1k-

iend.; with potential interaction need be contacted. Upon task termination

similar action must be taken to withdraw the task and its records from thv

task interaction and shared record lisLs. The shared record list is

Conceptually siiiilar to the process set of Chu and Ohlmacher [4].

6. Dcadlock Preve-nt ion

An algorithm for the prevention of deadlock in a distributed DBMS

is developed in tiis section. Initially some notational conventiens must

be established.

4.q

.4+ i " I 1 ' ' + " - • '
°

" : '
"

p _c , I ,i I i , a; I (. _ t . _ I o)

I. r. - a record In the data baseJ

2. TK - oa application task.

3. RK - potential shared record list of T.. A set of shared records
is accessed by several tasks and updated by at least one.

4. T - a task interaction list. A set of tasks whose potential
shared record lists have non-empty pairwise intersections.

5. ST - the .h;hrcd record li.st of XT. All records appearing in morc
than one potential sharod record list of the tasks in XT ,

6. B1k - the back-end proce:;sor executing a data base request for TK.

7. S1, K - the shared record 1 i st of a !;et of tasks T on back-end
proce;sor K. A rectrd in a sI: :red record i, t is marked with
a task identifier when it is requs,,;tcd or locked.

8. m (ST) - the number of distinct tasks that have records marked

in ST, K"

9. L (S T) - the number of distinct tasks that have records lockd
in ST.

For a given task interaction list XT, a copy of ST' the shared record

li;t, is m lint 1iaund oln each back-end processor executing data base operations;

for a ti: in .

5I

4"

-4i+i

In order to properly prevent deadlock, the state of the system

immcdiateiy prior to a deadlock state must be described and recognized. If

an algorithm can develop which insures that the distributed DBMS will ncver

enter a state that can immediately lead to deadlock, then the algorithm will

prevent deadlock. First let us formally define deadlock. j
Defnto 2

A set of tasks T = fTI,T 2 ,..,Tm), m 2, is deadlocked if for

I- i - m-1, Ti is blocked by T1 and Tm is blocked by T
J-i+1 T1

SEx I-e 1

Assume there are five tasks T1, T2, T3, T4, T5 , active in the system.

L et

R, =ri, r 2 , r 3

R 2 {r., r4, r 7 }

R = {r3 , r5, r 7
4= {r 6 , r 9)

R = {rs6 r }
R5 fr' 9

X1= (''1 T2)

",x x2 -- ,' ,,

{T.

x ,2 T3

X') T'

S, {r1 S3 = {r7 } S5 = {r)

S2 {S S4 ={rl, r 2 , r 7 }

................

10"

it T hi blocked by' "2, T2 is blocked by T3, and T3 is hilocked by '1 ,

then 4 i:- deadlockcd.

De fin it ion 2

A set of tasks T = {T 1 , T2 $... T , m > 2, is in a deadlock-prone

state it there is a sequence of unfulfillable requests that can be issued

by the ti;k.s in T that will place T in a deadlocked state.

A set of tasks cannot enter a deadlock state without first entering

a deadlo1ck-pronc state.

This result folloa's inmiediately from Definitions 2 and 3.

EX Ip 2

Cons idor the set of tasks in the previous example.

Assume that

T has locked

T2 has locked

and T has locked r

r3

T s.; in a de.:dlock-prone state since the followieg sequence of commands

re ;klit I n L1 ,I d l ock ;tgate:

T re(uestsr

T r

T 3 r ,',I t , r 3;

i T will bei ,ckl by T2, T2 will be blocked by T3 , and T 3 will

h hi, I,, . ,v "IT

c,, " i nil . a I m 1ho f or d0.t CCtin ,, tIe cxist ent' of a deadlock-prone

" ,<;t i[t .

'C+

11

1'U .-- 2

A set of tasks T is in a deadlock-prone state If and only L (ST) = T 'i.

III ioo f

Let T - {Ti , T2, ... T k where the numbering of tasks; Is arbitrary,

k 2.

We will first show that if L (ST) ITI, then T is in a deadlock-prone

state.

Let {r,, rS r S T.

Let QO be the state of the system when L (ST) = ITI.

Since L (ST) [TI, each task in T must have at least one record locked.

v'e can assume that for 1 < i 5 k, r. is locked by T.

Since each record in ST is contained in the intersection of the record

lists of at le,..;t tw(tasks, we can assume that for 1 < i : k-1, r cP n R,
I-i-i i +1

and rI c R k RI.

From system state QO, let task T.i request record ri+ I , 1 si <_k-l, and let

task Tk request record r .

The system will then enter state Q in which the following condition

h1ol d:

T1 is bocked by T2;

T2 is blOckod by T3

T i: b ,.h.,1 by

Thu,; t i:; a dcad1oc (sta,,.

i-rom D)('finitii, , it follows that QO is a dealock-prone state.

ii..r.l . [. (:T) i' f 2ipl ; th.i T is in a deadlock-proM, state.

t mut u w he dImonstrated that the existence of a deadlock-pron,'

ii

Let Q b ei dea lock--prone statvuch that there is a sequencc of uniat -

jsfiablc requests which lead to deadlock state Q "

Assume that the tasks in T are blocked in state Q as shown;

T1 is blocked by T2;

T 2 is blocked by T3;

Tk_ is blocked by Tk

Tk is blockd by T;

If a ta.sk is blocking ant her ta;k, the intersction of their record

lists .ru; t be nmm-cmnpty. Therefore, there is a set of records {r I , r2, ... r k

c S I such that

for I : i < k-i, r i+ ER.l n Ri+ 1

and rIL Rk n R1 ,

Since each task in T is blocking another task, each task in T must

have dL least one record locked in state Q1 , Therefore in state Q.,

L (S,) -!T 1 .

Since Q was reached from Q by a sequence of unsatisfiable requests,

the si;. of record:; locked in Q is idontical to the set of records

IoLI,d in " Th r'rfore in stote Q0 L (S T ITI where Q is a deadlock-

In t h, d t '.1, l,,4l: .(1i.id dead(lIock-prOnL' state. of precee'ding examples

Jr r r wo,re the"'u' 3' 2!
t . l,.'t,.t h the' recol-d:; indicate the task locking the record.

/4

€ ,.

13

6. An.AlL..orit 1 ._ for tlie Preventon of Deadlock

Fo]Xmma 2, we can see that if 1 (S T) < ITI - 1 fo- all.:!et ; of ,;Ihiared

records, then the system will be free of deadlock. This relationship between

the number of tasks potentially and actively sharing data and the occurrence

of deadlock forms the basis for a deadlock prevention algorithm.

Three commands and a response are necessary for operation in a deadlock-

free environm.ent. All commands and responses are transmitted among back-end

processors. The commands are LOCK, UNLOCK and REQUEST. When a task desires

to update a shared record, the back-end processor controlling that record

issues either a LOCK or REQUEST command to the other back-end processors

controlling records of tasks in any of the task interaction lists of the

requesting task. The decision as to whether LOCK or REQUEST is sent is based

upon relative ta~;. priorities. LOCK commands are sent to the back-end pro-

cessors of lower priority tasks, while back-end processors serving tasks of

higher priority receive REQUEST commands. If a back-end processor that has

received a REQUEST command determines that the record is available, it issues

a POSITIVE response. It is important to note that under the deadlock preven-

tion 'ilgorithm a negative response is not necessary since a back-end processor

issumni a REQUEST for an unavailable record or a REQUEST that would lead to

dea i,:c,, will reccive a LOCK command which invalidates the REQUEST. The

UNIC2 c,-mfi.ind rcli.iquis;hes control of a record. The detailed effect of

,C :I.(' -m I1 : T in the following definitions. A command or request

. ,, , r for the query of a shared record. A check of the shared

r,-(l-d li:t will indic-ate if thet record is available. In this discussion

ih t v,. ''a "Ult,'" will illdicate both a read and write, while "query" implies;

a -r ,lid aul v '

(

14*

It

1). min t i,,' i

The REQUES'T r T command issued by Bk to Bi results in the following

operat ions

If for all ST,i containing r.,

a. rj is unmarked in ST, i and

b. eith.r Tk has a record marked in ST, i or m (ST i) - IM T.1-1 for IMTI 2.

then B. marks r. in all ST, i with the identifier of Tk and transmits

a POSITIVE r , T response to R

Otherwise Bi does not respond to Bk '

Definition 4 indicates that two conditions must be satisfied before a

back-end processor can signify that a record is available:

1. The record must not be claimed by another task.

2. If the first condition is, then it must be certified that granting

control of the record to Tk would not cause any set of tasks to enter a

deadlock-prone state.

The LO{CK r.j_,_ Tk command, when issued by Bk to B. causes r. to be marked

i. locktd by T in all shared record lists of B..
k3

S' ; r.com.mand causes r. to be unmarked in all shared record lists.

i'i., purpo::., of 1. ' .T commind nd the POSITIVE response is to confirm

i, . ii ihii ity :of a r.cord with hi:,,hr priority ta.;ks. Since the distributed

d.t i . onviroinnt permits concurrent asynchronous operations on shared

d.at,-a ,.1 t'.cL-c proccs.:sor mi';L query those back-ends that contain higher

prw, t' v m; wI ich inlteract with the requesting task to verify the status

of Ii'.)ci,,,rd. If tl re, cord is a.v iil;ab vI, a POSITIVE -esponse is sent. if

, , i' 1av., ii .m le., .)t tho' tinn' of the REQUEST a LOCK command wouild

-'-C . " II " " I ' - I I i I . i ' . : . .. , . . .

15

alroady be in tran:;it to the back-end of the requesting task. Tile r-ceipt

of . LOCK command from a higher priority task invalidates a REQUEST. Til

LOCK command binds a record to a task while UNLOCK is used to release records.

The functions and responses are employed by the following algorithm

to prevent the distributed DBMS from entering a deadlock state.

Algor ithm 1

PART A

Whfen task T, desires to update shared record r., the following stepsK 3

must be taken by Bk to prevent a deadlock state.

1. Check if r. is marked in any ST,k containing r.. If so, Tk must

wait until B receives an UNLOCK r. command. Note that if r is marked in one
k-

S T,k it is marked in all ST,k .

2. If 7 S T ' such that m (ST k) =!XTJ - 1, then Tk must wait until

a record in ST,k is unlocked.

3. Mark r. with the identifier of Tk in all ST,k containing r..

4. For all higher priority tasks in any ST containing T ,

issue a RiOVJ ST r., T command to their back-end processors.

5. Wait ftor POlIVTlF r. rc-ponses from all back-ends of step 4............................ 1

6. If whil. waitiig, B k receive a LOCK r . , T . command, then B k mut isSue,

,UNI.: i I .. co-maljd: to all back-cnd; which have transmitted POSITIVE r responsc<;'

trnd tholl 1 k m. ' .c. ;tep 1

7. If whil' w;iit in, Bk receivs a LOCK r , T. comrnmand (r / r.), andk n---n- n .]

o (.'T,,) k X.Y 1, then B1 mu!.t ifl. uNOCK r.j commans to all back-cnd!,

whit li ,ive tri;n it td Ir.;T V. r rc;porns and then return to step 2.

*8. Whe'n Kk rece'iv.:; PO!; I TI V r rcsponscs from all tasks in step 4 it

' l(('K l T C(inmnd to ill lower priority tao:ks in) ,any XT containing, Tk
S. J' "A

16

!J]k iicy I hi-u (ijeraJl e upjofl r..k

I(. Upon conplut' ion of the opera I i on:; il step 9, 11 1 k :a ,:; r , r.

commnmd to all tasks in any XT containing TK .

PART B

When a back-end processor, Bi, receives a REQUEST r3, Tk command, it

tran.:!;its a POSIIVE r response if the requirements of Def. 4 are satisfied.

it a POSITIVE respon.,-e is transmitted, r. is marked with the identifier of.3

T k in all ST, j

PART C

When a back-end processor, Bi, receives a LOCK r , T, command and it does

not h.iv , REaI'ST r. coranand outstanding such that the conditions in steps

6 or 7 of Part A arise, rn is marked with the identifier of Tk in all S

It must now be deronstrated that Algorithm 1 prevents deadlock.

LcmTi'. 3

Al,,rith: I prevents the system from entering a deadlock-prone state.

;'.ci D,.f. 1, it can be seen that under all circumstances, for any ST

m(;,j . I (S.) for all back-,nd.; Bk

i i A.' :; i .. tik--end processor may only issue a LOCK command

ul u;, (".'- 1 .- 1 for all XT. Thus immediately prior to the issuance of, xrT*
a I'M CI, ,I,1.111d, I. (S T) - . Af ter, the LOCK command has been issued, the

iix..1i, ic ,f (S T) is j j,-1 for all ST . Therefore accordinfn to Lemma 2, il ti

,,t ,';: . ,i,ir.ut, under Algorithm 1, it cnnot enter a deadlock-prone state.

--

II 17

Algorithm I prevents the system from entering a deadlock state.

Proof

The theorem follows innediately from Lemmas 1 and 3.

The following example, illustrates the operating of a distributed DBMS with

the deadlock prevention algorithm in effect.

Example 4

Assume the set of tasks in Example 1. We will follow the actions of

the back-end processors B1 , B2, B3 which control data base access for T, T2,

and T3 respectively. The only task set in which the value of m (S T) can be

greater than 2 is X4 = {TT2, T 3}

In the example under consideration, S4 = {r, r3, r7 } For notational

convenience each S4, i will be denoted by an ordered triple in which the

first element corresponds to the task, if any, marking rI , the second element

indicates the task marking r3, while the final element represents the task

marking r7.

Assume the following set of references in the sample system.

Time Task Record Referenced

to0 T1 rI

t 0 T r7T2

L 0 T 3 r 3'1'

t 0 IrT] 3

T2 rI

t]0 T3 r7

. On., . I t., (r ,i 'e; lle (' c l,nd record it Ila; rvq,,sLt.Cd, it requires 5

tim i il ; to coinp let it!; op r.it ion (11 lho t', records.

-- -''

I.I

~18

For purpo;es of this example, the delays between back-end procc;sor-;

shown below are assumed.

B I-> B2 - 2 time units

B I-> B3 - 3 time units

B2 <-> B3 - 1 time unit.

Also, let the task priorities be

T, >T 2 >T 3

Given the requests listed above the following operations are performed

in the system.

1. At time t0

S 4,1 {i, I S { ,2) S4,3 - (,3, I

B issues LOCK r T to B and B

I I 1 2 3

T1 proceeds to operate on rl.

B2 issues REQUEST r7 ,T 2 to BI .

B issues REQUEST r3 T3 to B and B

2. At time ti,

B2 receives gEOUEST r3, T

23 3

S4 , 2 { ,3,2 1.

B2 tran!;mits a POSITIVE 3 to T3

3. At time t 2

B1 receives REQUEST r7_ T2 .

S 4.S4 I {I, , 2).

Ba Tra~itmits a POSITIVE r 7 to B2

B2 receives a LOCK T'lI

S4. 2 - (13.2).

* , ,

'V-_

! 19

4. At LIme t

B rece I i 1lE()lil.' r , T . Since m (S 2 tle request is Ignor(-d1. ." . - !--3' (4,1)

B3 receive; LOCK r,1 , T1 . This command also indicates that the request

for r3 by B3 will not be granted by T Thus,

S 4 3 = {I, ,).

B3 issues an UNLOCK r -T 3 to B2 .

5. At time t4,

B receives POSITIVE r from B
27

T 2 proceeds to operate on r7 .

B2 issues a LOCK r7 , T2 to B.

B2 also receives UNLOCK r3 , T3 from B3 .

S 4,2 , ,2},

6. At time t

B3 receivs LO(I. r7, T 2.

S {l, ,2 ,

7. A, time t

B.i u;su . 'K r, T to B and B
-S1.2 3

kS
* '4,1

'1 pl' ~ '' ,o L ,. e onil O i-

h. At t ,e t

it iee- vc 'so: l.(('1: r , 1
2 - I I

S ,2 i 1,2).

AI .2

. A t tIfl(t13

133

20

B 3 Iceivc-; lOCK r , T

s 4 , -IIS4, ={1,1,2}

10. At time t

B I ssues UNLOCK r and tNLOCK r 3 to B 2 and B3 .

s = {, , 2),
4,1

1 . At time T1 7,

B receives UNLOCK r and UNLOCK r and issues REQUEST rl T)

2
to C

$ 4, 2 = {2, ,21.

12 . At time t

B 3 receives NT.OCK v-1 and UNLOCK r and issues REQUEST r1 , T 3

to BI and B

S4 ,3 { , 3, 2}.

1 3. At L ime t

B r cv i,,s RY ifQ T r T
1 -- ~ --l-9--- 2

i ; = {2, ,2}.4,1

Si', issues Pl T;' ',l v to B2.

B2 rccti\,. CI(:: i,_3

$4,2 {2,3,21.2 -- -2

2 i::; ,: ' £ ; 3 , 3.

.14. At tim 20'

B r , o iwV: I 1I'iIV F f r on B .
A 1

l m k
I

l li , ' ii

+

..+ I , - -+ '- I+- .. . -" - . +

21

15. At timeC 21,
BI rece ives RI 'KQ tI.ST r 3 -LT 3 '

S4,1 - {2,3,2).

B1 issues POSITIVE r3 to B3 '

B2 receives POSITIVE r1 from B1 and then issues a LOCK rl, T2 to B3

and proceeds to operate upon r1 .

16. At time t22 .

B3 receives LOCK r 1- T2 .

S4, 3 - {2,3,2}.

17. At time t24,

B3 receives POSITIVE r3 from B and then proceeds to operate on r3.

18. At time t26,

B2 issues UNLOCK r and UNLOCK r7 to B1 and B .

S4,2 - { 3).

19. At time t27,

B3 receives UNLOCK r I and UNLOCK r7 from B2 and then tran6mits REQUEST

r!;L_ 3 to B and B2 .

S = ,3,3).

20. At time t23'

. ret evts UNLOCK r and UNLOCK r 7 from B2..

s4,1 3,),

B2 recelves UFJ _E5T r ,
$2

B issu,'s a POSITIVi r to B

S4,2 - ,3,3),
P.. S

22

2 1. A t i t 9

B3 receives POSIIVE r7 from 112.

22. At time t

11 receives REQUEST r7, T3 from B3

S4, = f 3, 3).

B transmits POSITIVE r 7 to B3

23. At time t

B3 receives POSITIVE' r7 from B1 and then beins to operate upon r7.

4.

I *

7. Lff ici y f DeadIock Pre v I.. ion I or i Ibi

It is difficult to treat the efficiency of Algorithm I without

experinlwlltat evidence from a prototype distributed DBMS. There are several

critical performance factors which could vary among distributed DBMS imple-

mcntatirns. Network topology, degree of potential sharing among application

tasks, and subschema size are among the system parameters that will have

the stroneest performance effects.

The number of back-end proce.;sors in the network along with the

physical distance and type of connections among the back-end processors

will influence the amount of communication overhead resulting from dead-

lock prevention. It should be noted that only back-end processors that

execute data base operations for tasks that share data have a need to

exchange infori...ation in order to prevent deadlock. If both deadloc!: prevention

and a high degree of efficiency are goals of a system design, than data shared

by a group of tasks should be controlled by a minimal number of back-end

processors. (Ideally, each such unit of shared data would reside on the

storalge of a single back-end processor.)

One environment under which the deadlock prevention algorithm could

dcgra:de performance is an on-line system in which each user may access

any r(ord in tht, entire data base. In this situation, the deadlock preventicn

aljg."ritlm would force the DB,,S to operate in a single threaded mode. If the

sul)-',c, n.; cem1,cp" appiled to this unrestricted on-line environment, the

undw,ifC ,all C Vff'VcC <; o1 deadlock prcvvntion can be virtually eliminated.

In:; e.(I Of p.rmi tting each on-line command unrestricted access to the entire

dlti [h:;t', the dat a ha ;t can be part itioned into a logical collection of

nub I;h'p. :;. Wht'Ln1ever a user issues an on-line data base request, the

;ilypr- , atr !;uno-,(ht'ilu Iis invoked prior to the actual execution of the command.

24

Ti, :,kll b-sChcmaS s;hould be de fined to encompass only that portion of thte data

base th'it the command may access. For example, if an airline reservation

clcrk updates a passenger list, the sub-schema would contain the passenger

lisL for a given flight.

in an on-line environment in which the data base has been partitioned

intk, .;ub-;hcmas the user need not sacrifice any flexibility of data access.

a:Ii t i.cr would interface with a re-entrant control program which parses

each request, invokes the applicable sub-schema and then activates a host

ta;1 to execute the request. By organizing an on-line system in this manner

the negative performance effects of deadlock prevention are minimized.

8. Conkc iaon

The approach to deadlock prevention described here is a dynamic pre-

claim technique (81 since it implicitly locks a set of records that could

be reqiired for an operation. The deadlock prevention scheme proposed

for distributed data base systems has some similarity to the data base dead-

locL prevention mechanisms of Lomet 116) and Chu and Ohlmacher 14]. Lomet

Ia grap",-theoretical technique to avoiding deadlock. However, the

r.::.t io contained in the graphs is essentially the same as that maintained

.r. I.i ,rd record list. The version of Lomet's algorithm presented in

rf.r,,, [161 does not consider the performance effects of operation in a

" " dl,.t vitutc~ ('(virunmen'

The proces,;,s set of Chot and Ohlimacher is very close conceptually to the

i,. ,,.curd Ii,.;t. The algorithm of Chu and Ohilmacher is also intended

for d is t Vi, Iut ed ";ystem!;. Ti technique developed here differs from the

up;, . , of Chl and Oblachcr in that it operates at the record level and

In t ht ; rcq.,I,;ting task is given control of only that part of its shared

rvc,,d1 i:.t nccss;ary to avoid a deadlock-prone state. The feasibility of

. .. .-

25

eiat ab.itv sharing at the record level has been studied using simulation by

ShemLr and Collmeyer (20], who projected that even with a high degree of

contention, performance degradation due to overhead would be minimal.

Pree;ently, several commercially available, single-machine data base systems

provide data sharing and locking at the record level (221.

The deadlock prevention algorithm is intended to prevent all possible

deadlocks while allowing maximum data base sharing at the record level.

The results of the Section 6 demonstrate that the algorithm meets these

criteria. Naturally, deadlock prevention incurs some overhead. However,

careful planning by the designer of a distributed data base application

who is cognizant of the operation of the prevention algorithm can result

in minimization of the overhead. For a distributed DBMS application to

operate efficiently under the deadlock prevention algorithm, it iz important

that the data base be partitioned into sub-schemas. However, once the sub-

schema is defined, the individual application programs need not be aware of

the mechanics of the deadlock prevention algorithm.

Due to the infrequency of deadlock situations, a deadlock detection

f.ch'ma requires less overhead than deadlock prevention in a single machine

DB2, 1. i ,wtvel , the uncertain amount of overhead in distributed DBMS rollback

addckd ,o the fixed overhead of the timeout mechanism, both of which are neces-

v or, t i; in dead Ioek (hetection, leads to proposing deadlock prevention as

th ;. at i.fa., , ciiani.sm for handling deadlocks in a distributed

dal ai:;u. Thte subject of rollback for a distributed DBMS is treated in

reft.rence f1i], which presents an algorithm for minimizing the overhead of

t h. rollbhack operation.

Tie li';s comptited by the pr.vention algorithm have potential application

in two critical design areas of distributed data base. The size of a task

4;'7

26

Intvraction li';t, XT9 is an indicator of the amount of interfort-nce

re.:aiIt I n[; from the activtition of :a data ba-; La,;k. Slace t:!:,k Jnitcrf r.iwe

has an effect in system performance, the scheduler could use the size of

XT as one of the weighting factors in the scheduling algorithm.

The contents of the shared record list would be of use to a prepaging

memory manager [23]. Records that are unlocked, yet only requestable by a

single task, could be transmitted to the page buffer associated with that

task. The shared record list would be particularly valuable when used in

conjunction with a Markovian paging model [1,11].

27

1. Abo, A. V., D)Cnni1ii;, P. J. and lll liNaii, J. D., Priilcill e.. of Opliinal
Page Repiace icent, Journal1 AC 18,1 (.Jan. 1971) , 80-93.

2. Astr.ihan, N. N., et al., Systcm R: Relational Approach to Data Base
Itnagement, ACM TODS 1,2 (June 1976), 97-137.

3. Chxmiberlin, D. D., Boyce, R. F., and Traiger, I. L., A Deadlock-Free

Scheme for Resource Locking in a Data-Base Environment, Proc. IFIP 74
(August 1974), 340-343.

4. Chu, W. W., and Ohlmacher, C., Avoiding Deadlock in Distributed Data

Bases, Proc. ACM Annual Conference (November 1974), 156-160.

5. Coffman, E. C.E,r., Eiphick, I. J., and Shoshani, A., System Deadlock,
3ji!t _Suri,'.< 3,2 (June 1971), 67-78.

6. Courtois, P. J., Heymans, F., and Parnas, D. L., Concurrent Control with

"Rca(idrs" and "Writers", Comm. ACM 14,10 (October 1971), 667-668.

7. Eswaran, K. P., et al., The Notions of Consistency and Predicate
Locks in a Data Basu System, Comm. ACM 19,11 (November 1976), 624-633.

8. Evcroest, C. C., Concurrent Update Control and Data Base Integrity,
in ' aUti! P-ase NanaI! -IOint, J. W. Klimbie and K. L. Koffeman (eds.)

North-Holland, Am!;terdam, (April 1974), 241-270.

9. Frailey, D. J., A Practical Approach to Managing Resources and
Avoiding iDeadlocks, Corma. ACM 16,5 (May 1973), 323-329.

10. Fry, J. P. and S.ibley, E. H., Evolution of Data Base Management Systems,
C omptin_ . . 1r\s 8,1 (March 1976), 7-42.

ij. Ccle loe,, F. A. Unified Approach to the Evaluation of a Class of
Repjinc .nent Algorit' i',, IEEE Trans. on Comp. C-22, 6 (June 1973)
61;l-6118.

"12- ilaiermarn. A. N. Prevention of System Deadlocks, Comm. ACM 12,
7 (July 1969), 373-385

13. HLav. idcr, .. W. Avo>idi X, ; Dcidlock:s in Mult it aking Systems, IBM
S N;' ", Ioull'ni'l 7, 20 unelll 1968) , 74-84.

14 . lb t, fB. C. Soi , Dtad? ok'-, T'rop(ert ites of Comp .it r Svstems, [or:'mniin

S 'j .'",- 4, 3 (Svptcmiher 1W12) , 179-196.

* 15. Ki a' P. F. :Iid Ck)I Iri c ' , A. ,I. 1. atiL ; Sha rinllg - an Efficient

Ncr h illi:.ll for SuIlppo r t i [f Conctr rcn t Pt oc c4s;,e;, Proc. Na ti ona I Compu t 'r
Conf., Vol. 42, (June 1973), 271-275.

28

16. Lo11t, D. B., A Practical Deadlock Avoidance Algorithm for Data Base
System,;, Proc. ACM SIGMOD Conf. (Atugu,-t 1977), 122-127.

17. Mary:.inki, F. J. and Fisher, P. S., Rollback and Re~ov('ry in D!;tribtuted
Data Base Management Systems, Proc. ACM Annual Conf. (October 1977).

18. Maryanski, F. J., et al., A Minicomputer Based Distributed Data Base
System, Proc. NBS-IEEE Trends and Applications Symposium: Micro and
Mini Systems (May 1976), 113-117.

19. Miller, T. J., Deadlock in Distributed Computer Networks, UIUCDCS-
R-74-619, Dept. of Computer Science, University of Illinois, Urbana,
Ill., 1974.

20. Russell, R. D., A Model of Deadlock-Free Resource Allocation, Ph.D.
Thesis, Dept. of Computer Science, Stanford University, Stanford, Ca.,
(July 1971).

21. Shemer, J. E. and Collmeyer, A. J., Database Sharing: A Study of
Interference, Roadblock, and Deadlock, Proc. ACM SIGFIDET Workshop,
(November 1972), 147-163.

22. Slonim, J., Maryanski, F. J., and Farrell, M. W., A Survey of Database
Management Systems, Tech. Report, Dept. of Computer Science, Kansas
State University, Manhattan, Kansas 66506 (in prep.).

23. Trivedi, K. S., Prepaging and Applications to Array Algorithms, IEEE
Trans. on Comp. C-25, 9 (September 1976), 915-921.

-,.W

HOST HOST

1 MTm
BACK
END

DATA BASE J+1
V '

SBI- BI- BI-

FUNCT FCT FUNCT

1 2

DATA BASE DATA BASE DATA BASE

2

FIGURE 1

DISTRIBUTED DBMS

W

'-

II 'I

